Affiliation:
1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
Abstract
Abstract
The potential impact of intrusions of polluted air into the Arctic basin on sea ice melting rates and the surface energy budget is examined. This paper extends a previous study to cloud-resolving simulations of the entire spring season during the 1998 Surface Heat Budget of the Arctic (SHEBA) field campaign. For that purpose, the Los Alamos National Laboratory sea ice model is implemented into the research and real-time versions of the Regional Atmospheric Modeling System at Colorado State University (RAMS@CSU). This new version of RAMS@CSU also includes a new microphysical module that considers the explicit nucleation of cloud droplets and a bimodal representation of their spectrum. Different aerosol profiles based on 4 May 1998 observations were used to characterize the polluted upper layer and the 2–3 daily SHEBA soundings were utilized to provide time-evolving boundary conditions to the model. Results indicate that entrainment of ice-forming nuclei (IFN) from above the inversion increases the sea ice melting rates when mixed-phase clouds are present. An opposite although less important effect is associated with cloud condensation nuclei (CCN) entrainment when liquid-phase clouds prevail.
Publisher
American Meteorological Society
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献