Impact of the Diurnal Cycle of Solar Radiation on Intraseasonal SST Variability in the Western Equatorial Pacific

Author:

Shinoda Toshiaki1

Affiliation:

1. NOAA–CIRES Climate Diagnostics Center, Boulder, Colorado

Abstract

Abstract The mechanism by which the diurnal cycle of solar radiation modulates intraseasonal SST variability in the western Pacific warm pool is investigated using a one-dimensional mixed layer model. SSTs in the model experiments forced with hourly surface fluxes during the calm–sunny phase of intraseasonal oscillation are significantly warmer than those with daily mean surface fluxes. The difference in two experiments is explained by upper-ocean mixing processes during nighttime. Surface warming during daytime creates a shallow diurnal warm layer near the surface (0–3 m), which can be easily eroded by surface cooling during nighttime. Further cooling, however, requires a substantial amount of energy because deeper waters need to be entrained into the mixed layer. Since the shallow diurnal layer is not formed in the experiment with daily mean surface fluxes, the SST for the hourly forcing case is warmer most of the time due to the diurnally varying solar radiation. Sensitivity of the intraseasonal SST variation to the penetrative component of solar radiation is examined, showing that the diurnal cycle plays an important role in the sensitivity. Solar radiation absorbed in the upper few meters significantly influences intraseasonal SST variations through changes in amplitude of diurnal SST variation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference35 articles.

1. A time-dependent model of the upper ocean.;Denman;J. Phys. Oceanogr.,1973

2. A comparison of seasonal thermocline models with observations.;Gill;Deep-Sea Res.,1976

3. Intraseasonal air–sea interaction in the tropical Indian and Pacific Oceans.;Hendon;J. Climate,1997

4. Marine Optics.;Jerlov,1976

5. Simulation of the intraseasonal oscillation in the ECHAM-4 model: The impact of coupling with ocean model.;Kemball-Cook;J. Atmos. Sci.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3