How Well Does Noah-MP Simulate the Regional Mean and Spatial Variability of Topsoil Water Content in Two Agricultural Landscapes in Southwest Germany?

Author:

Poltoradnev M.1,Ingwersen J.1,Imukova K.1,Högy P.2,Wizemann H.-D.3,Streck T.1

Affiliation:

1. Institute of Soil Science and Land Evaluation, Biogeophysics, Universität Hohenheim, Stuttgart, Germany

2. Institute of Landscape and Plant Ecology, Plant Ecology and Ecotoxicology, Universität Hohenheim, Stuttgart, Germany

3. Institute of Physics and Meteorology, Physics and Meteorology, Stuttgart, Germany

Abstract

Abstract The spatial variability of topsoil water content (SWC) is often expressed through the relationship between its spatial mean 〈θ〉 and standard deviation σθ. The present study tests the concept that a reasonably performing land surface model (LSM) should be able to produce σθ–〈θ〉 data pairs that fall into a polygon, spanned by the cloud of observed data and two anchor points: σθ at the permanent wilting point σθ–〈θwp〉 and σθ at saturation σθ–〈θs〉. A state-of-the-art LSM, Noah-MP, was driven by atmospheric forcing data obtained from eddy covariance field measurements in two regions of southwestern Germany, Kraichgau (KR) and Swabian Alb (SA). KR is characterized with deep loess soils, whereas the soils in SA are shallow, clayey, and stony. The simulations series were compared with SWC data from soil moisture networks operating in the two study regions. The results demonstrate that Noah-MP matches temporal 〈θ〉 dynamics fairly well in KR, but performs poorly in SA. The best match is achieved with the van Genuchten–Mualem representation of soil hydraulic functions and site-specific rainfall, soil texture, green vegetation fraction (GVF) and leaf area index (LAI) input data. Nevertheless, most of the simulated σθ–〈θ〉 pairs are located outside the envelope of measurements and below the lower bound, which shows that the model smooths spatial SWC variability. This can be mainly attributed to missing topography and terrain information and inadequate representation of spatial variability of soil texture and hydraulic parameters, as well as the model assumption of a uniform root distribution.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3