Terrain-Induced Turbulence Intensity during Tropical Cyclone Passage as Determined from Airborne, Ground-Based, and Remote Sensing Sources

Author:

Hon Kai-Kwong1,Chan Pak-Wai1

Affiliation:

1. Hong Kong Observatory, Kowloon, Hong Kong, China

Abstract

AbstractLow-level turbulence [rapid headwind fluctuations below 1600 ft (500 m)] poses potential safety hazards to landing/departing aircraft and is capable of disrupting air traffic. Timely, accurate alerts of low-level turbulence require reliable determination of its intensity, quantified by an internationally adopted aircraft-independent metric [cube root of the eddy dissipation rate (EDR1/3)], which cannot be directly measured but only inferred from observational data. In this paper, a large-scale survey of terrain-induced low-level turbulence intensity around the Hong Kong International Airport (HKIA) during tropical cyclone (TC) passage is presented, utilizing EDR1/3 values determined from multiple remote sensing and in situ sources, including the scanning Doppler lidar, the terminal Doppler weather radar (TDWR), a high-resolution anemometer, and the operational Windshear and Turbulence Warning System (WTWS) at HKIA. Over a 18 720-min study period spanning five TC cases between 2010 and 2012, ground-based EDR1/3 was computed using a variety of first-principle and empirical methods and was shown to demonstrate a strong linear correlation with airborne values determined from quick access recorder (QAR) data of over 350 landing flights. Spatiotemporal features as experienced on board aircraft were also reproduced by the lidar- and TDWR-derived profiles. Positive skill could be extracted from threshold-based alerting of low-level turbulence events by considering each ground-based source individually, while a combination of lidar and TDWR alerts demonstrated enhanced performance and hence the potential value of complementary surveillance under clear-air and in rain conditions. This study serves to establish the ability of ground-based instruments in correlating with airborne EDR1/3 and the performance of threshold-based alerting algorithms for turbulence events, contributing toward improvements in turbulence-alerting techniques for the aviation community.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3