Diagnosis of Tilted Weather Radars Using Solar Interference

Author:

Curtis Mark1,Dance Sandy1,Louf Valentin1,Protat Alain1

Affiliation:

1. a Bureau of Meteorology, Melbourne, Victoria, Australia

Abstract

AbstractFor mechanically scanning weather radars, precise pointing of the antenna is a key factor in ensuring accurate observation of the atmosphere at far range. Since operational radars typically scan the atmosphere using a series of 360° sweeps at fixed elevation angles, level scanning during azimuthal rotation is also important, but often not actively monitored after installation.One method of gauging pointing accuracy of a radar is to use solar interference which occurs as the antenna sweeps past the sun. By comparing the observed position of the sun with its known position, an estimate of pointing error in both elevation and azimuth can be obtained. A basic model for this error assumes that the radar sweep is perfectly level and that biases in elevation are therefore independent of azimuth. We extend this model to allow for the possibility that the plane of rotation may not be level. Consequently, the direction and severity of tilt may be diagnosed in addition to any constant error in elevation and azimuth pointing.The extended model was applied to a subset of radars from the Australian weather radar network resulting in the discovery of several out of level radars. One radar, Captains Flat near Canberra, showed a severe tilt of 0.81° prompting inspection by a technician. This revealed that mounting studs on the pedestal of the radar tower were badly worn and loose. Correction of this issue resolved the tilt component of the diagnosed elevation error and prevented further mechanical damage to the instrument.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3