Using WSR-88D Data and Insolation Estimates to Determine Convective Boundary Layer Depth

Author:

Elmore Kimberly L.1,Heinselman Pamela L.2,Stensrud David J.2

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, Oklahoma

2. NOAA/National Severe Storms Laboratory Norman, Oklahoma

Abstract

Abstract Prior work shows that Weather Surveillance Radar-1988 Doppler (WSR-88D) clear-air reflectivity can be used to determine convective boundary layer (CBL) depth. Based on that work, two simple linear regressions are developed that provide CBL depth. One requires only clear-air radar reflectivity from a single 4.5° elevation scan, whereas the other additionally requires the total, clear-sky insolation at the radar site, derived from the radar location and local time. Because only the most recent radar scan is used, the CBL depth can, in principle, be computed for every scan. The “true” CBL depth used to develop the models is based on human interpretation of the 915-MHz profiler data. The regressions presented in this work are developed using 17 summer days near Norman, Oklahoma, that have been previously investigated. The resulting equations and algorithms are applied to a testing dataset consisting of 7 days not previously analyzed. Though the regression using insolation estimates performs best, errors from both models are on the order of the expected error of the profiler-estimated CBL depth values. Of the two regressions, the one that uses insolation yields CBL depth estimates with an RMSE of 208 m, while the regression with only clear-air radar reflectivity yields CBL depth estimates with an RMSE of 330 m.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3