Affiliation:
1. COSMIC Program Office, University Corporation for Atmospheric Research, Boulder, Colorado
Abstract
AbstractGlobal positioning system (GPS) radio occultation (RO) is capable of retrieving vertical profiles of atmospheric parameters with high resolution (<100 m), which can be achieved in spherically symmetric atmosphere. Horizontal inhomogeneity of real atmosphere results in representativeness errors of retrieved profiles. In most cases these errors increase with a decrease of vertical scales of atmospheric structures and may not allow one to fully utilize the physical resolution of RO. Also, GPS RO–retrieved profiles are affected by observational noise of different types, which, in turn, affect the representation of small-scale atmospheric structures. This study investigates the effective resolution and optimal smoothing of GPS RO–retrieved temperature profiles using high-pass filtering and cross correlation with collocated high-resolution radiosondes. The effective resolution is a trade-off between representation of real atmospheric structures and suppression of observational noise, which varies for different latitudes (15°S–75°N) and altitudes (10–27 km). Our results indicate that at low latitudes the effective vertical resolution is about 0.2 km near the tropical tropopause layer and about 0.5 km in the lower stratosphere. The best resolution of 0.1 km is at the cold-point tropical tropopause. The effective resolutions at the midlatitudes are slightly worse than at low latitudes, varying from ~0.2 to 0.6 km. At high latitudes, the effective resolutions change notably with altitude from ~0.2 km at 10–15 km to ~1.4 km at 22–27 km. Our results suggest that the atmospheric inhomogeneity plays an important role in the representation of the vertical atmospheric structures by RO measurements.
Funder
Division of Atmospheric and Geospace Sciences
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献