Affiliation:
1. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
2. Earth Observing Laboratory, National Center for Atmospheric Research,* Boulder, Colorado
Abstract
AbstractAccurate radar refractivity retrievals are critical for quantitative applications, such as assimilating refractivity into numerical models or studying boundary layer and convection processes. However, the technique as originally developed makes some simplistic assumptions about the heights of ground targets () and the vertical gradient of refractivity (). In reality, the field of target phases used for refractivity retrieval is noisy because of varying terrain and introduces estimation biases. To obtain a refractivity map at a constant height above terrain, a 2D horizontal refractivity field at the radar height must be computed and corrected for altitude using an average . This is achieved by theoretically clarifying the interpretation of the measured phase considering the varying and the temporal change of . Evolving causes systematic refractivity biases, as it affects the beam trajectory, the associated target range, and the refractivity field sampled between selected targets of different heights. To determine and changes, a twofold approach is proposed: first, can be reasonably inferred based on terrain height; then, a new method of estimation is devised by using the property of the returned powers of a pointlike target at successive antenna elevations. The obtained shows skill based on in situ tower observation. As a result, the data quality of the retrieved refractivity may be improved with the newly added information of and .
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献