A New Method of Characterizing Flow Patterns of Vortices and Detecting the Centers of Vortices in a Numerical Wind Field

Author:

Hou Jie1,Wang Ping2,Zhuang Shuo2

Affiliation:

1. School of Electrical Engineering and Automation, Tianjin University, and Educational Technology and Laboratory Management Center, Tianjin Foreign Studies University, Tianjin, China

2. School of Electrical Engineering and Automation, Tianjin University, Tianjin, China

Abstract

AbstractA vortex in a wind field is an important aspect of a weather system; vortices often result in hazardous weather, such as rainstorms, windstorms, and typhoons. As the availability of numerical meteorological data increases, traditional manual analysis no longer provides an efficient means of timely analysis of observed and predicted atmospheric vortices. Therefore, a method was proposed to automatically characterize flow patterns of vortices and to detect the centers of vortices in complex wind fields generated from numerical weather prediction (NWP) models. First, a statistical feature was developed to preliminarily filter regional wind data to obtain (anti)cyclonic vortices. Second, flow patterns of ideal axisymmetric wind fields were extracted by analyzing circular data related to wind directions. Third, for actual vortices in a complex wind field, a series of rules and deformation degree indices were constructed to retrieve the provisional centers of vortices. Fourth, the Ward hierarchical clustering algorithm was used to cluster these provisional centers, which were filled up by a dilation operation to cover the core region of the vortex. Finally, the vortices were classified as either cyclones or anticyclones based on their analyzed vorticity, and their global centers were precisely located. Experimental results show that the proposed preprocessing method was more effective than the traditional filtering method and that the features of the flow pattern were stable regardless of the variety in the resolution and scale. It was also proven that the proposed method can be further extended and applied to detecting typhoon centers, for which it was more effective than other currently used methods.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3