Argos-3 Satellite Communication System: Implementation on the Arvor Oceanographic Profiling Floats

Author:

André Xavier1,Moreau Bertrand2,Le Reste Serge1

Affiliation:

1. Institut Français de Recherche et d'Exploitation de la Mer, Brest, France

2. Société d'Ingénierie et de Conseils en Technologies, Brest, France

Abstract

AbstractThe scientific community observes the ocean for applications in the fields of oceanography and climate research. To recover in situ data, more than 3000 profiling floats are operated in the framework of the Argo program. Each float performs cycles between the sea surface and a depth of 2000 m. Scientific data are gathered while the float is traveling upward from the depths of the oceans and are then transmitted via a satellite communication system at the end of each cycle. During its time at the surface, mainly dedicated to transmissions, the float is vulnerable and subject to drift, which limits its use in many studies. Moreover, transmission times are becoming longer due to a trend toward high-resolution or multisensor profiles. Consequently, the transmission system embedded in the profiling floats had to evolve.Argos-3 is the latest generation of the Argos satellite communication system. It has been designed to allow instruments to transmit more data in a small time budget and as an alternative to Iridium, already implemented on profiling floats in restrictive applications.This study aims to evaluate the implementation of Argos-3 on Arvor profiling floats. Tests were carried out first in the laboratory, before being implemented on the Arvor float and deployed at sea. This study proves that the high-data-rate mode suffered from European electromagnetic noise, which is incompatible with this application. The interactive low-data-rate mode was successfully qualified; it is capable of transmitting an entire dataset in a few minutes, compared to 8–10 h for the previous Argos-2 system.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3