Sensor-Specific Error Statistics for SST in the Advanced Clear-Sky Processor for Oceans

Author:

Petrenko B.1,Ignatov A.2,Kihai Y.1,Dash P.3

Affiliation:

1. NOAA/STAR, College Park, and GST, Inc., Greenbelt, Maryland

2. NOAA/STAR, College Park, Maryland

3. NOAA/STAR, College Park, Maryland, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Abstract

AbstractThe formulation of the sensor-specific error statistics (SSES) has been redesigned in the latest implementation of the NOAA Advanced Clear-Sky Processor for Oceans (ACSPO) to enable efficient use of SSES for assimilation of the ACSPO baseline regression SST (BSST) into level 4 (L4) analyses. The SSES algorithm employs segmentation of the SST domain in the space of regressors and derives the segmentation parameter from the statistics of regressors within the global dataset of matchups. For each segment, local regression coefficients and standard deviations (SDs) of BSST minus in situ SST are calculated from the corresponding subset of matchups. The local regression coefficients are used to generate an auxiliary product—piecewise regression (PWR) SST—and SSES biases are estimated as differences between BSST and PWR SST. Correction of SSES biases, which transforms BSST back into PWR SST, reduces the effects of residual cloud; variations in view zenith angle; and, during the daytime, diurnal surface warming. This results in significant reduction in the global SD of fitting in situ SST, making it comparable with SD for the Canadian Meteorological Centre (CMC) L4 SST. Unlike the foundation CMC SST (which is consistent with in situ SST at night but biased cold during the daytime), the PWR SST is consistent with in situ data during both day and night and thus may be viewed as an estimate of “depth” in situ SST. The PWR SST is expected to be a useful input into L4 SST analyses, especially for foundation SST products, such as the CMC L4.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3