On Producing Reliable and Affordable Numerical Weather Forecasts on Public Cloud-Computing Infrastructure

Author:

Chui Timothy C. Y.1,Siuta David2,West Gregory1,Modzelewski Henryk1,Schigas Roland1,Stull Roland1

Affiliation:

1. The University of British Columbia, Vancouver, British Columbia, Canada

2. Northern Vermont University, Lyndonville, Vermont

Abstract

AbstractCloud-computing resources are increasingly used in atmospheric research and real-time weather forecasting. The aim of this study is to explore new ways to reduce cloud-computing costs for real-time numerical weather prediction (NWP). One way is to compress output files to reduce data egress costs. File compression techniques can reduce data egress costs by over 50%. Data egress costs can be further minimized by postprocessing in the cloud and then exporting the smaller resulting files while discarding the bulk of the raw NWP output. Another way to reduce costs is to use preemptible resources, which are virtual machines (VMs) on the Google Cloud Platform (GCP) that clients can use at an 80% discount (compared to nonpreemptible VMs), but which can be turned off by the GCP without warning. By leveraging the restart functionality in the Weather Research and Forecasting (WRF) Model, preemptible resources can be used to save 60%–70% in weather simulation costs without compromising output reliability. The potential cost savings are demonstrated in forecasts over the Canadian Arctic and in a case study of NWP runs for the West African monsoon (WAM) of 2017. The choice in model physics, VM specification, and use of the aforementioned cost-saving measures enable simulation costs to be low enough such that the cloud can be a viable platform for running short-range ensemble forecasts when compared to the cost of purchasing new computer hardware.

Funder

Mitacs

BC Hydro

Natural Sciences and Engineering Research Council of Canada

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Cross-platform Scheduling Framework for NWP in Hybrid Clouds;2024-06-21

2. Forecasting Hourly Wildfire Risk: Enhancing Fire Danger Assessment Using Numerical Weather Prediction;Weather and Forecasting;2024-06

3. Cloud-Based Real-Time Tourism Demand Forecasting System with Deep Learning;2023 IEEE 19th International Conference on Automation Science and Engineering (CASE);2023-08-26

4. Real-Time Probabilistic Tropical Cyclone Forecasting in the Cloud;Bulletin of the American Meteorological Society;2022-08

5. Cloud Computing Efforts for the Weather Research and Forecasting Model;Bulletin of the American Meteorological Society;2021-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3