Assessing Seaglider® Model-based Position Accuracy on an Acoustic Tracking Range

Author:

Bennett James S.1,Stahr Frederick R.1,Eriksen Charles C.1,Renken Martin C.2,Snyder Wendy E.2,Van Uffelen Lora J.3

Affiliation:

1. 1 School of Oceanography, University of Washington, Seattle WA, 98195 USA.

2. 2 Naval Undersea Warfare Center Division Keyport, Keyport, WA 98345 USA. DISTRIBUTION A: Approved for public release: distribution unlimited. NUWC Keyport #20-011

3. 3 Department of Ocean Engineering, University of Rhode Island, Narragansett, RI, 02882 USA

Abstract

AbstractSeagliders® are buoyancy-driven autonomous underwater vehicles whose sub-surface position estimates are typically derived from velocities inferred using a flight model. We present a method for computing velocities and positions during the different phases typically encountered during a dive-climb profile based on a buoyancy-driven flight model. We compare these predictions to observations gathered from a Seaglider deployment on the acoustic tracking range in Dabob Bay (200 m depth, mean vehicle speeds ~30 cm s-1), permitting us to bound the position accuracy estimates and understand sources of various errors. We improve position accuracy estimates during long vehicle accelerations by numerically integrating the flight-model's fundamental momentum-balance equations. Overall, based on an automated estimation of flight-model parameters, we confirm previous work that predicted vehicle velocities in the dominant dive and climb phases are accurate to < 1 cm s-1, which bounds the accumulated position error in time. However, in this energetic tidal basin, position error also accumulates due to unresolved depth-dependent flow superimposed upon an inferred depth-averaged current.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3