Automated Processing of Oceanic Bubble Images for Measuring Bubble Size Distributions underneath Breaking Waves

Author:

Al-Lashi Raied S.1,Gunn Steve R.1,Czerski Helen2

Affiliation:

1. Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, United Kingdom

2. Department of Mechanical Engineering, University College London, London, United Kingdom

Abstract

AbstractAccurate in situ measurements of oceanic bubble size distributions beneath breaking waves are needed for a better understanding of air–sea gas transfer and aerosol production processes. To achieve this goal, a novel high-resolution optical instrument for imaging oceanic bubbles was designed and built in 2013 for the High Wind Gas Exchange Study (HiWinGS) campaign in the North Atlantic Ocean. The instrument is able to operate autonomously and can continuously capture high-resolution images at 15 frames per second over an 8-h deployment. The large number of images means that it is essential to use an automated processing algorithm to process these images. This paper describes an automated algorithm for processing oceanic images based on a robust feature extraction technique. The main advantages of this robust algorithm are it is significantly less sensitive to the noise and insusceptible to the background changes in illumination, can extract circular bubbles as small as one pixel (approximately 20 μm) in radius accurately, has low computing time (approximately 5 seconds per image), and is simple to implement. The algorithm was successfully used to analyze a large number of images (850 000 images) from deployment in the North Atlantic Ocean as part of the HiWinGS campaign in 2013.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3