Surface Wave Climatology and Its Variability in the North Indian Ocean Based on ERA-Interim Reanalysis

Author:

Anoop T. R.1,Kumar V. Sanil1,Shanas P. R.1,Johnson Glejin1

Affiliation:

1. Ocean Engineering, Council of Scientific and Industrial Research, National Institute of Oceanography, Dona Paula, Goa, India

Abstract

AbstractThe climate over the north Indian Ocean (NIO) is one of the most dynamic in the world because of seasonally reversing monsoon winds. In this study, the climate of the NIO and the variability of its surface waves using the European Centre for Medium-Range Weather Forecasts (ECMWF) global atmospheric reanalysis product (ERA-Interim) for the period 1979–2012 are analyzed. Annual average significant wave height (SWH) of the NIO ranges from 1.5 to 2.5 m and the seasonal average is highest (3–3.5 m) during the monsoon period [June–September (JJAS)]. Swells propagating from the Southern Hemisphere are present in the NIO during the premonsoon [February–May (FMAM)] and postmonsoon [October–January (ONDJ)] periods. The waves are separated into wind seas and swells based on the wave energy statistical method. The results show that the NIO is swell dominated and that wind sea heights are lower compared to the swell heights. Higher wind sea and swell heights are observed during the monsoon in the western NIO because of strong cross-equatorial winds of the Somali (Findlater) jet. In the postmonsoon period, the eastern NIO shows a higher swell height than the western NIO shows. SWH shows an annual increasing trend in the western NIO. On a seasonal scale, the trends are increasing significantly in the monsoon compared to the postmonsoon period in a major part of the NIO, whereas the premonsoon period shows a decline in SWH. In the NIO, the monsoon is the dominant mode of variability and it covers 92% of the total variability. Wave climate is also influenced by the annual and interannual variability in monsoon wind and rainfall.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3