Ground-Based Observations and Modeling of the Visibility and Radar Reflectivity in a Radiation Fog Layer

Author:

Boers R.1,Baltink H. Klein1,Hemink H. J.1,Bosveld F. C.1,Moerman M.2

Affiliation:

1. KNMI, De Bilt, Netherlands

2. TNO, Utrecht, Netherlands

Abstract

Abstract The development of a radiation fog layer at the Cabauw Experimental Site for Atmospheric Research (51.97°N, 4.93°E) on 23 March 2011 was observed with ground-based in situ and remote sensing observations to investigate the relationship between visibility and radar reflectivity. The fog layer thickness was less than 200 m. Radar reflectivity values did not exceed −25 dBZ even with visibilities less than 100 m. The onset and evaporation of fog produce different radar reflectivity–visibility relationships. The evolution of the fog layer was modeled with a droplet activation model that used the aerosol size distribution observed at the 60-m altitude tower level as input. Radar reflectivity and visibility were calculated from model drop size spectra using Mie scattering theory. Since radiative cooling rates are small in comparison with cooling rates due to adiabatic lift of aerosol-laden air, the modeled supersaturation remains low so that few aerosol particles are activated to cloud droplets. The modeling results suggest that the different radar reflectivity–visibility relationships are the result of differences in the interplay between water vapor and cloud droplets during formation and evaporation of the fog. During droplet activation, only a few large cloud droplets remain after successfully competing for water vapor with the smaller activated droplets. These small droplets eventually evaporate (deactivate) again. In the fog dissolution/evaporation stage, only these large droplet need to be evaporated. Therefore, to convert radar reflectivity to visibility for traffic safety products, knowledge of the state of local fog evolution is necessary.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3