The Role of Free-Stream Turbulence in Attenuating the Wind Updraft above the Collector of Precipitation Gauges

Author:

Cauteruccio Arianna1,Colli Matteo2,Freda Andrea3,Stagnaro Mattia1,Lanza Luca G.1

Affiliation:

1. Department of Civil, Chemical and Environmental Engineering, University of Genova, and WMO/CIMO Lead Centre “B. Castelli” on Precipitation Intensity, Genoa, Italy

2. Artys SRL, Genoa, Italy

3. Department of Civil, Chemical and Environmental Engineering, University of Genova, Genoa, Italy

Abstract

AbstractIn operational conditions, wind is the main environmental source of measurement biases for catching-type precipitation gauges. The gauge geometry induces a deformation of the surrounding airflow pattern, which is generally characterized by relevant updraft zones in front of the collector and above it. This effect deviates the trajectories of the lighter hydrometeors away from the collector and thus is responsible for a significant reduction of the collection performance. Previous approaches to this problem, using computational fluid dynamics simulations and wind-tunnel tests, mostly assumed steady and uniform free-stream conditions. Wind is turbulent in nature, though. The role of natural free-stream turbulence on collection performance is investigated in this work for the case study of a calyx-shaped precipitation gauge and wind velocity between 10 and 18 m s−1. The unsteady Reynolds-averaged Navier–Stokes model was adopted. Turbulent conditions were simulated by imposing constant free-stream velocity and introducing a fixed solid fence upstream of the gauge to generate the desired turbulence intensity. Wind-tunnel measurements allowed validating numerical results by comparing measured and simulated velocity profiles in representative portions of the investigated domain. Results revealed that in the case of turbulent free-stream conditions both the normalized magnitude of the flow velocity and the updraft above the collector are reduced by approximately 20% and 12%, respectively. The dissipative effect of the turbulent fluctuations in the free stream has a damping role on the acceleration of the flow and on the updraft. This would result in a reduced undercatch with respect to literature simulations that employed the traditional uniform free-stream conditions.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3