Using Neural Networks to Correct Historical Climate Observations

Author:

Leahy Thomas P.1,Llopis Francesc Pons1,Palmer Matthew D.2,Robinson Niall H.3

Affiliation:

1. Department of Mathematics, Imperial College London, London, United Kingdom

2. Met Office Hadley Centre, Exeter, United Kingdom

3. Met Office Informatics Lab, Exeter, United Kingdom

Abstract

AbstractBiases in expendable bathythermograph (XBT) instruments have emerged as a leading uncertainty in reconstructions of historical ocean heat content change and therefore climate change. Corrections for these biases depend on the type of XBT used; however, this is unspecified for 52% of the historical XBT profiles in the World Ocean Database. Here, we use profiles of known XBT type to train a neural network that can classify probe type based on three covariates: profile date, maximum recorded depth, and country of origin. Whereas previous studies have shown an average classification skill of 77%, falling below 50% for some periods, our new algorithm maintains an average skill of 90%, with a minimum of 70%. Our study illustrates the potential for successfully applying machine learning approaches in a wide variety of instrument classification problems in order to promote more homogeneous climate data records.

Funder

EIT Climate-KIC

Engineering and Physical Sciences Research Council

Met Office

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3