Using Neural Networks to Correct Historical Climate Observations
Author:
Affiliation:
1. Department of Mathematics, Imperial College London, London, United Kingdom
2. Met Office Hadley Centre, Exeter, United Kingdom
3. Met Office Informatics Lab, Exeter, United Kingdom
Abstract
Funder
EIT Climate-KIC
Engineering and Physical Sciences Research Council
Met Office
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Link
http://journals.ametsoc.org/jtech/article-pdf/35/10/2053/3407087/jtech-d-18-0012_1.pdf
Reference20 articles.
1. A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change;Abraham;Rev. Geophys.,2013
2. Sensitivity of global upper-ocean heat content estimates to mapping methods, XBT bias corrections, and baseline climatologies;Boyer;J. Climate,2016
3. XBT science: Assessment of instrumental biases and errors;Cheng;Bull. Amer. Meteor. Soc.,2016
4. Biases in expendable bathythermograph data: A new view based on historical side-by-side comparisons;Cowley;J. Atmos. Oceanic Technol.,2013
5. Improved estimates of upper-ocean warming and multi-decadal sea-level rise;Domingues;Nature,2008
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Argo Buoy Trajectory Prediction: Multi-Scale Ocean Driving Factors and Time–Space Attention Mechanism;Journal of Marine Science and Engineering;2024-02-13
2. Research on Anomaly Detection of Offshore Buoy Water Temperature Data Based on LSTM-DAE Model;2023 5th International Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI);2023-12-01
3. Mean sea level modelling using the neural network along the Chennai coast;Journal of Water and Climate Change;2022-12-15
4. Improved Infilling of Missing Metadata from Expendable Bathythermographs (XBTs) Using Multiple Machine Learning Methods;Journal of Atmospheric and Oceanic Technology;2022-09
5. Quantifying Spread in Spatiotemporal Changes of Upper-Ocean Heat Content Estimates: An Internationally Coordinated Comparison;Journal of Climate;2022-01-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3