Method for Classification of Snowflakes Based on Images by a Multi-Angle Snowflake Camera Using Convolutional Neural Networks

Author:

Hicks A.1,Notaroš B. M.1

Affiliation:

1. Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Abstract

AbstractTaking advantage of the recent developments in machine learning, we propose an approach to automatic winter hydrometeor classification based on utilization of convolutional neural networks (CNNs). We describe the development, implementation, and evaluation of a method and tool for classification of snowflakes based on geometric characteristics and riming degree, respectively, obtained using CNNs from high-resolution images by a Multi-Angle Snowflake Camera (MASC). These networks are optimal for image classification of winter precipitation particles due to their high accuracy, computational efficiency, automatic feature extraction, and application versatility. They require little initial preparation, enable the use of smaller training sets through transfer learning techniques, come with large supporting communities and a wealth of resources available, and can be applied and operated by nonexperts. We illustrate both the ease of implementation and the usefulness of operation the CNN architecture offers as a tool for researchers and practitioners utilizing in situ optical observational devices. A training dataset containing 1450 MASC images is developed primarily from two storm events in December 2014 and February 2015 in Greeley, Colorado, by visual inspection of recognizable snowflake geometries. Defined geometric classes are aggregate, columnar crystal, planar crystal, small particle, and graupel. The CNN trained on this dataset achieves a mean accuracy of 93.4% and displays excellent generalization (ability to classify new data). In addition, a separate training dataset is developed by sorting snowflakes into three classes and showcasing distinct degrees of riming. The CNN riming degree estimator yields promising initial results but would benefit from larger training sets.

Funder

Division of Atmospheric and Geospace Sciences

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3