Performance and Technique of Coherent 2-μm Differential Absorption and Wind Lidar for Wind Measurement

Author:

Iwai Hironori1,Ishii Shoken1,Oda Ryoko1,Mizutani Kohei1,Sekizawa Shinya1,Murayama Yasuhiro1

Affiliation:

1. National Institute of Information and Communications Technology, Koganei, Tokyo, Japan

Abstract

Abstract A coherent 2-μm differential absorption and wind lidar (Co2DiaWiL) has been built with a high-power Q-switched Tm,Hm:YLF laser to measure CO2 concentration and radial wind speed. The performance of the Co2DiaWiL is described and analyzed, with a view to demonstrating system capabilities for remote measurements of wind velocities in the atmospheric boundary layer and free troposphere. Bias in the velocity measurements was estimated at −0.0069 m s−1 using measurements from a stationary hard target. The Co2DiaWiL achieved a velocity precision of 0.12 m s−1, derived from the magnitude of random error in radial wind velocity measurements. These measurements were made for ranges out to 20–25 km by using a horizontally fixed beam mode for average times of 1 min. Quantitative intercomparisons of 1-min averages between the Co2DiaWiL and a sonic anemometer revealed a correlation coefficient of 0.99. This study demonstrated measurements of horizontal wind profiles, by making radial wind velocity measurements with the Co2DiaWiL using conical scanning. Profile differences at higher levels could be attributed to probable large horizontal separations of the radiosondes and the low signal-to-noise ratio of the Co2DiaWiL. A pseudo-dual-Doppler technique was developed to retrieve horizontal wind components with a single-Doppler lidar and a steering mirror. Intercomparisons of the 1-min-averaged u and υ components from the pseudo-dual-Doppler lidar measurements with those from the sonic anemometer revealed correlation coefficients of 0.84 and 0.83, respectively.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3