Time–Space SST Variability in the Atlantic during 2013: Seasonal Cycle

Author:

Liu Liyan1,Lozano Carlos2,Iredell Dan1

Affiliation:

1. I. M. Systems Group, and Environmental Modeling Center, NOAA/NWS/NCEP, College Park, Maryland

2. Environmental Modeling Center, NOAA/NWS/NCEP, College Park, Maryland

Abstract

AbstractA 2-yr-long daily gridded field of sea surface temperature (SST) in the Atlantic centered for the year 2013 is projected onto orthogonal components: its mean, six harmonics of the year cycle, the slow-varying contribution, and the fast-varying contribution. The periodic function defined by the year harmonics, referred to here as the seasonal harmonic, contains most of the year variability in 2013. The seasonal harmonic is examined in its spatial and temporal distribution by describing the amplitude and phase of its maxima and minima, and other associated parameters. In the seasonal harmonic, the ratio of the duration of warming period to cooling period ranges from 0.2 to 2.0. There are also differences in the spatial patterns and dominance of the year harmonics—in general associated with regions with different insolation, oceanic, and atmospheric regimes. Empirical orthogonal functions (EOFs) of the seasonal harmonic allow for a succinct description of the seasonal evolution for the Atlantic and its subdomains. The decomposition can be applied to model output, allowing for a more incisive model validation and data assimilation. The decorrelation time scale of the rapidly varying signal is found to be nearly independent of the time of the year once four or more harmonics are used. The decomposition algorithm, here implemented for a single year cycle, can be applied to obtain a multiyear average of the seasonal harmonic.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3