On the Transition from Profile Altimeter to Swath Altimeter for Observing Global Ocean Surface Topography

Author:

Fu Lee-Lueng1,Ubelmann Clement1

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Abstract

Abstract Conventional radar altimeter makes measurement of sea surface height (SSH) in one-dimensional profiles along the ground tracks of a satellite. Such profiles are combined via various mapping techniques to construct two-dimensional SSH maps, providing a valuable data record over the past two decades for studying the global ocean circulation and sea level change. However, the spatial resolution of the SSH is limited by both coarse sampling across the satellite tracks and the instrument error in the profile measurements. A new satellite mission based on radar interferometry offers the capability of making high-resolution wide-swath measurement of SSH. This mission is called Surface Water and Ocean Topography (SWOT), which will demonstrate the application of swath altimeter to both oceanography and land hydrology. This paper presents a brief introduction to the design of SWOT, its performance specification for SSH, and the anticipated spatial resolution and coverage, demonstrating the promise of SWOT for fundamental advancement in observing SSH. A main objective of the paper is to address issues in the anticipated transition of conventional profile altimetry to swath altimetry in the future—in particular, the need for consistency of the new observing system with the old for extending the existing data record into the future. A viable approach is to carry a profile altimeter in the SWOT payload to provide calibration and validation of the new measurement against the old at large scales. This is the baseline design of SWOT. The unique advantages of the approach are discussed in the context of a new standard for observing the global SSH in the future.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3