Adaptive Reduction of Striping for Improved Sea Surface Temperature Imagery from Suomi National Polar-Orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS)

Author:

Bouali Marouan1,Ignatov Alexander2

Affiliation:

1. National Oceanic and Atmospheric Administration, College Park, Maryland, and Cooperative Institute for Research in the Atmosphere, Fort Collins, Colorado

2. National Oceanic and Atmospheric Administration, College Park, Maryland

Abstract

Abstract The Suomi National Polar-Orbiting Partnership (S-NPP) satellite was successfully launched on 28 October 2011. It carries five new-generation instruments, including the Visible Infrared Imaging Radiometer Suite (VIIRS). The VIIRS is a whiskbroom radiometer that scans the surface of the earth using a rotating telescope assembly, a double-sided half-angle mirror, and 16 individual detectors. Substantial efforts are being made to accurately calibrate all detectors in orbit. As of this writing, VIIRS striping is reduced to levels below those seen in corresponding Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) bands and meets the program specifications and requirements. However, the level 2 SST products derived from level 1 sensor data records (SDRs) thermal emissive bands still show residual striping. These artifacts reduce the accuracy of SST measurements and adversely affect cloud masking and the output of downstream applications, such as thermal front detection. To improve the quality of SST imagery derived from the VIIRS sensor, an adaptive algorithm was developed for operational use within the National Environmental Satellite, Data, and Information Service (NESDIS)’s SST system. The methodology uses a unidirectional quadratic variational model to extract stripe noise from the observed image prior to nonlocal filtering. Evaluation of the algorithm performance over an extended dataset demonstrates a significant improvement in the Advanced Clear-Sky Processor for Oceans (ACSPO) VIIRS SST image quality, with normalized improvement factors (NIF) varying between 5% and 25%.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference38 articles.

1. Bering Sea thermal fronts from Pathfinder data: Seasonal and interannual variability;Belkin;Pac. Oceanogr.,2005

2. Destriping MODIS data using overlapping field-of-view method;Bisceglie;IEEE Trans. Geosci. Remote Sens.,2009

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3