Rigorous Evaluation of a Fraternal Twin Ocean OSSE System for the Open Gulf of Mexico

Author:

Halliwell G. R.1,Srinivasan A.2,Kourafalou V.3,Yang H.4,Willey D.4,Le Hénaff M.5,Atlas R.6

Affiliation:

1. NOAA/AOML/Physical Oceanography Division, Miami, Florida

2. Meteorology and Physical Oceanography Division, Rosenstiel School of Marine and Atmospheric Science, University of Miami, and Tendral, LLC, Miami, Florida

3. Meteorology and Physical Oceanography Division, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

4. Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/AOML/Physical Oceanography Division, Miami, Florida

5. Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

6. NOAA/AOML, Miami, Florida

Abstract

Abstract A new fraternal twin ocean observing system simulation experiment (OSSE) system is validated in a Gulf of Mexico domain. It is the first ocean system that takes full advantage of design criteria and rigorous evaluation procedures developed to validate atmosphere OSSE systems that have not been fully implemented for the ocean. These procedures are necessary to determine a priori that the OSSE system does not overestimate or underestimate observing system impacts. The new system consists of 1) a nature run (NR) stipulated to represent the true ocean, 2) a data assimilation system consisting of a second ocean model (the “forecast model”) coupled to a new ocean data assimilation system, and 3) software to simulate observations from the NR and to add realistic errors. The system design is described to illustrate the requirements of a validated OSSE system. The chosen NR reproduces the climatology and variability of ocean phenomena with sufficient realism. Although the same ocean model type is used (the “fraternal twin” approach), the forecast model is configured differently so that it approximately satisfies the requirement that differences (errors) with respect to the NR grow at the same rate as errors that develop between state-of-the-art ocean models and the true ocean. Rigorous evaluation procedures developed for atmospheric OSSEs are then applied by first performing observing system experiments (OSEs) to evaluate one or more existing observing systems. OSSEs are then performed that are identical except for the assimilation of synthetic observations simulated from the NR. Very similar impact assessments were realized between each OSE–OSSE pair, thus validating the system without the need for calibration.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3