Affiliation:
1. Department of Physics, University of Helsinki, Helsinki, Finland
2. Finnish Meteorological Institute, Helsinki, and Department of Applied Physics, Aalto University, Espoo, Finland
Abstract
Abstract
The sensitivity of radar backscattering cross sections on different snowflake shapes is studied at C, Ku, Ka, and W bands. Snowflakes are simulated using two complex shape models, namely, fractal and aggregate, and a soft spheroid model. The models are tuned to emulate physical properties of real snowflakes, that is, the mass–size relation and aspect ratio. It is found that for particle sizes up to 5 mm and for frequencies from 5 to 35 GHz, there is a good agreement in the backscattering cross section for all models. For larger snowflakes at the Ka band, it is found that the spheroid model underestimates the backscattering cross sections by a factor of 10, and at W band by a factor of 50–100. Furthermore, there is a noticeable difference between spheroid and complex shape models in the linear depolarization ratios for all frequencies and particle sizes.
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献