Monitoring the Absolute Calibration of a Polarimetric Weather Radar

Author:

Frech Michael1,Hagen Martin2,Mammen Theo3

Affiliation:

1. Meteorologisches Observatorium Hohenpeissenberg, Deutscher Wetterdienst, Hohenpeissenberg, Germany

2. Institut für Physik der Atmosphäre, DLR, Oberpfaffenhofen, Germany

3. Deutscher Wetterdienst, Hamburg, Germany

Abstract

AbstractThe absolute calibration of a dual-polarization radar of the German Weather Service is continuously monitored using the operational birdbath scan and collocated disdrometer measurements at the Hohenpeissenberg observatory. The goal is to measure the radar reflectivity constant Z better than ±1 dB. The assumption is that a disdrometer measurement close to the surface can be related to the radar measurement at the first far-field range bin. This is verified using a Micro Rain Radar (MRR). The MRR data fill the gap between the measurement near the surface and the far-field range bin at 650 m. Using data from the first half of the warm season in 2014, a bias in radar calibration of 1.8 dB is found. Data from only stratiform precipitation events are considered. After adjusting the radar calibration and using an independent data sample, very good agreement is found between the radar, the MRR, and the disdrometer with a bias in smaller than 1 dB. The bias in is not captured with the classic one-point calibration, which is performed twice a day using a built-in test signal generator. This is attributed to the fact that the characterization of the transmit and receive path is not accurate enough. Solar interferences during the operational scanning are used to characterize the receiver. There, the bias found is small, about 0.2 dB, so that bias based on the comparison of the radar with external sensors is attributed to the transmit path. The representativeness of the disdrometer measurements are assessed using two additional disdrometers located within 200-m distance.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference31 articles.

1. Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements;Adirosi;Atmos. Res.,2016

2. Radar calibration: Some simple approaches;Atlas;Bull. Amer. Meteor. Soc.,2002

3. Rainfall estimation with an operational polarimetric C-band radar in the United Kingdom: Comparison with a gauge network and error analysis;Bringi;J. Hydrometeor.,2011

4. Calibration procedures for global precipitation-measurements ground-validation radars;Chandrasekar;Radio Sci. Bull.,2015

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3