Affiliation:
1. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Abstract
Abstract
Precipitable water or integrated water vapor can be obtained from zenith travel-time delays from global positioning system (GPS) signals if the atmospheric pressure and temperature at the GPS site is known. There have been more than 10 000 GPS receivers deployed as part of geophysics research programs around the world; but, unfortunately, most of these receivers do not have collocated barometers. This paper describes a new technique to use North American Regional Reanalysis pressure, temperature, and geopotential height data to calculate station pressures and surface temperature at the GPS sites. This enables precipitable water to be calculated at those sites using archived zenith delays. The technique has been evaluated by calculating altimeter readings at aviation routine weather report (METAR) sites and comparing them with reported altimeter readings. Additionally, the precipitable water values calculated using this method have been found to agree with SuomiNet GPS precipitable water, with RMS differences of 2 mm or less, and are also generally in agreement with radiosonde measurements of precipitable water. Applications of this technique are shown and are explored for different synoptic situations, including atmospheric-river-type baroclinic storms and the North American monsoon.
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献