Progressive Pulse Compression: A Novel Technique for Blind Range Recovery for Solid-State Radars

Author:

Salazar Aquino Cesar M.1,Cheong Boonleng2,Palmer Robert D.3

Affiliation:

1. School of Electrical and Computer Engineering, Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

2. Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

3. School of Meteorology, Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Abstract

AbstractIn this paper, a novel technique is proposed to mitigate the so-called blind range on radars that use pulse compression. It is well known that the blind range is caused by the strong leak-through into the receiver during the transmission cycle. The proposed technique is called progressive pulse compression (PPC) and is based on partial decoding. PPC uses a portion of the uncontaminated received signal in conjunction with pulse compression to estimate the echoes from the incomplete signal. The technique does not require the use of a fill pulse or any hardware modifications. PPC can be divided into three steps. The fist step is to discard all the received signals during the transmit cycle and apply a smooth taper for continuous transition from zero to one. The second step is to perform the pulse compression using matched filter. The combination of these two steps is equivalent to performing pulse compression using a progressively changing template to partially extract the uncontaminated received signal for compression. The third step is to compensate for the progressively changing template so that proper reflectivity values can be recovered. This technique has been tested on the PX-1000 and will be implemented on PX-10k in the near future. These two radars are designed and operated by the Advanced Radar Research Center at the University of Oklahoma and are both X-band software-defined solid-state systems. The results presented in this paper are collected using the PX-1000 radar.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3