Statistical Quality Control of High-Resolution Winds of Different Radiosonde Types for Climatology Analysis

Author:

Houchi Karim1,Stoffelen Ad1,Marseille Gert-Jan1,De Kloe Jos1

Affiliation:

1. Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Abstract

AbstractQuality control (QC) is among the most important steps in any data processing. These steps are elaborated for high-vertical-resolution radiosonde datasets that were gathered and analyzed to study atmospheric winds. The database is composed of different radiosonde wind-finding systems (WFSs), including radio theodolite, Loran C, and GPS. Inspection of this database, particularly for wind, wind shear, and ascent height increments (dz), showed a nonnegligible amount of outliers in radio theodolite data as compared to the two other WFSs, thus denoting quality differences between the various systems. An effective statistical QC (SQC) is then developed to isolate and eliminate outliers from the more realistic observations. Improving the accuracy of the radio theodolite WFS is critical to the derivation of the vertical motion and the vertical gradients of the horizontal wind—that is, wind shear—mainly because of the direct dependence of these quantities on dz. Based on the climatological distribution of the quality-controlled dz, a new approach is suggested to estimate these wind quantities for radio theodolite data. The approach is validated with the high-quality modern WFSs (Loran C and GPS). Although initially of reduced quality, applying SQC and using the climatological mean dz of 12-s smoothed radio theodolite profiles shows very good improvement in the climatological wind analyses of radio theodolite WFSs. Notably, the climatologies of ascent rate, vertical motion, horizontal wind, and vertical shear now look comparable for the various WFSs. Thus, the SQC processing steps prove essential and may be extended to other variables and measurement systems.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference20 articles.

1. The SPARC programme;Chanin;Phys. Chem. Earth,1995

2. Trilateration and extension to Global Positioning System navigation;Fang;J. Guid. Control Dyn.,1986

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acquiring high-resolution wind measurements by modifying radiosonde sounding procedures;Atmospheric Measurement Techniques;2023-09-19

2. Wind observations from hot‐air balloons and the application in an NWP model;Meteorological Applications;2023-07

3. A Fast Quality Control of 0.5 Hz Temperature Data in China;Frontiers in Earth Science;2022-04-27

4. Correlating Extremes in Wind Divergence with Extremes in Rain over the Tropical Atlantic;Remote Sensing;2022-02-25

5. Assimilation of In-Situ Observations;Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV);2021-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3