Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar

Author:

Newsom Rob K.1,Turner David D.2,Goldsmith John E. M.3

Affiliation:

1. Pacific Northwest National Laboratory, Richland, Washington

2. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

3. Sandia National Laboratories, Livermore, California

Abstract

Abstract This study investigates the accuracy and calibration stability of temperature profiles derived from an operational Raman lidar over a 2-yr period from 1 January 2009 to 31 December 2010. The lidar, which uses the rotational Raman technique for temperature measurement, is located at the U.S. Department of Energy's Atmospheric Radiation Measurement site near Billings, Oklahoma. The lidar performance specifications, data processing algorithms, and the results of several test runs are described. Calibration and overlap correction of the lidar is achieved using simultaneous and collocated radiosonde measurements. Results show that the calibration coefficients exhibit no significant long-term or seasonal variation but do show a distinct diurnal variation. When the diurnal variation in the calibration is not resolved the lidar temperature bias exhibits a significant diurnal variation. Test runs in which only nighttime radiosonde measurements are used for calibration show that the lidar exhibits a daytime warm bias that is correlated with the strength of the solar background signal. This bias, which reaches a maximum of ~2.4 K near solar noon, is reduced through the application of a correction scheme in which the calibration coefficients are parameterized in terms of the solar background signal. Comparison between the corrected lidar temperatures and the noncalibration radiosonde temperatures show a negligibly small median bias of −0.013 K for altitudes below 10 km AGL. The corresponding root-mean-square difference profile is roughly constant at ~2 K below 6 km AGL and increases to about 4.5 K at 10 km AGL.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3