Introducing Along-Track Error Correlations for Altimetry Data in a Regional Ocean Prediction System

Author:

Storto Andrea1,Oddo Paolo1,Cozzani Elisa1,Coelho Emanuel Ferreira1

Affiliation:

1. Centre for Maritime Research and Experimentation, La Spezia, Italy

Abstract

AbstractBecause of the systematic error in the processing of altimetry data, sea level anomaly (SLA) observation errors are likely affected by nonnegligible spatial correlations. To account for these, we exploit the synergy of altimetry data with in situ profiles from gliders, piloted to follow the altimetry tracks during the Long-Term Glider Mission for Environmental Characterization 2017 (LOGMEC17) observational campaign in the Ligurian Sea. The assimilation of along-track unfiltered sea level anomalies in a regional ocean analysis and forecast system is consequently optimized by means of introducing spatial correlations for the SLA observation errors. In particular, collocated data of glider and altimetry are used to derive an along-track error covariance model for the sea level anomaly assimilation, assuming that most of the covariance behavior versus separation distance stems from altimetry. Spatial scales of the altimetry error are found to have a correlation radius of about 12 km for the dataset utilized in the Ligurian Sea, using a simple Gaussian shape for the error correlation, shorter than the correlation radius found through assimilation output diagnostics. A variational data assimilation system is modified to relax the usual assumption of uncorrelated altimetry observation errors, thus allowing for along-track error correlations. Its implementation provides promising results in the regional ocean prediction system, outperforming in most verification skill scores the use of uncorrelated observational errors without compromising the analysis scheme efficiency.

Funder

NATO Allied Command Transformation

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3