Acquiring Long-Term Turbulence Measurements from Moored Platforms Impacted by Motion

Author:

Bluteau Cynthia E.1,Jones Nicole L.1,Ivey Gregory N.1

Affiliation:

1. School of Civil, Environmental and Mining Engineering, and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia

Abstract

AbstractFor measurements from either profiling or moored instruments, several processing techniques exist to estimate the dissipation rate of turbulent kinetic energy ϵ, a core quantity used to determine oceanic mixing rates. Moored velocimeters can provide long-term measurements of ϵ, but they can be plagued by motion-induced contamination. To remove this contamination, two methodologies are presented that use independent measurements of the instrument’s acceleration and rotation in space. The first is derived from the relationship between the spectra (cospectra) and the variance (covariance) of a time series. The cospectral technique recovers the environmental (or true) velocity spectrum by summing the measured spectrum, the motion-induced spectrum, and the cospectrum between the motion-induced and measured velocities. The second technique recovers the environmental spectrum by correcting the measured spectrum with the squared coherency, essentially assuming that the measured signal shares variance with either the environmental signal or the motion signal. Both techniques are applied to moored velocimeters at 7.5 and 20.5 m above the seabed in 105 m of water. By estimating the orbital velocities from their respective spectra and comparing them against those obtained from nearby wave measurements, the study shows that the surface wave signature is recovered with the cospectral technique, while it is underpredicted with the squared coherency technique. The latter technique is particularly problematic when the instrument’s motion is in phase with the orbital (environmental) velocities, as it removes variance that should have been added to the measured spectrum. The estimated ϵ from the cospectral technique compares well with estimates from nearby microstructure velocity shear vertical profiles.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference21 articles.

1. Dynamics of a tidally-forced stratified shear flow on the continental slope;Bluteau;J. Geophys. Res.,2011

2. Estimating turbulent kinetic energy dissipation using the inertial subrange method in environmental flows;Bluteau;Limnol. Oceanogr.: Methods,2011

3. Estimating turbulent dissipation from microstructure shear measurements using maximum likelihood spectral fitting over the inertial and viscous subranges;Bluteau;J. Atmos. Oceanic Technol.,2016

4. Direct covariance flux estimates from mobile platforms at sea;Edson;J. Atmos. Oceanic Technol.,1998

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3