Resonance Scattering Detection Using the CSU–CHILL Dual-Wavelength, Dual-Polarization Radar

Author:

Junyent Francesc1,Chandrasekar V.1,Kennedy P.2

Affiliation:

1. Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

2. Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

AbstractThe CSU–CHILL radar is a dual-wavelength, dual-polarization weather radar system operating at S and X band with coaxial beams. This radar system offers a unique environment to develop and/or validate algorithms that cut across its wavelengths and polarizations. This paper presents a method to retrieve resonance scattering regions from the difference in intrinsic reflectivities after attenuation correction, which is performed using measured reflectivity fields only. The algorithm to retrieve these regions dominated by non-Rayleigh scattering is applied to different storm events, and the obtained data field capturing the difference in S- and X-band reflectivities due to resonance effects (which we will call Mie signal for convenience) is compared to the collocated dual-polarization fields. The obtained Mie signal is also compared to hail reports. In both cases, the retrieved Mie signal is found to be consistent with the rest of the dual-polarization data fields, and in some situations, it is shown to bring information not directly discernible from the usual dual-polarization radar variables.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference51 articles.

1. Multi-wavelength radar reflectivity of hailstorms

2. A computational study of polarimetric radar observables in hail

3. Aydin, K., V. Giridhar, and Y. Zhao, 1991: Polarimetric C-band radar observables in melting hail: A computational study. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 23.9.

4. Use of Polarization to Characterize Precipitation and Discriminate Large Hail

5. Dual-Wavelength Polarimetric Radar Analyses of Tornadic Debris Signatures

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Winter Precipitation Detection Using C- and X-Band Radar Measurements;Remote Sensing;2024-07-18

2. RCS Simulation of Small Multi-Rotor Unmanned Aerial Vehicle;2022 International Applied Computational Electromagnetics Society Symposium (ACES-China);2022-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3