Affiliation:
1. Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, Colorado
Abstract
AbstractThe multihole probe (MHP) is an effective instrument for relative wind measurements from small unmanned aircraft systems (sUAS). Two common drawbacks for the integration of commercial MHP systems into low-cost sUAS are that 1) the MHP airdata system cost can be several times that of the sUAS airframe; and 2) when extended from the airframe, the pressure-measuring probe is often exposed to damage during normal operations. A flush airdata system (FADS) with static pressure sensing ports mounted flush with the airframe skin provides an alternative to the MHP system. This project implements a FADS with multiple static pressure sensors located at selected locations on the airframe. Computational fluid dynamics simulations are used to determine the airframe locations with the highest pressure change sensitivity to changes in the airframe angle of attack and sideslip angle. Wind tunnel test results are reported with nonlinear least squares and neural networks regression methods applied to the pressure measurements to estimate the instantaneous angle of attack and sideslip. Both methods achieved mean errors of less than . A direct comparison of the regression methods show that the neural network method provides a more accurate relative wind angle estimate than the nonlinear least squares method.
Funder
Air Force Office of Scientific Research
National Science Foundation
National Robotics Initiative
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献