Automatic Classification of Biological Targets in a Tidal Channel Using a Multibeam Sonar

Author:

Cotter Emma1,Polagye Brian1

Affiliation:

1. University of Washington, Seattle, Washington

Abstract

AbstractMultibeam sonars are widely used for environmental monitoring of fauna at marine renewable energy sites. However, they can rapidly accrue vast volumes of data, which poses a challenge for data processing. Here, using data from a deployment in a tidal channel with peak currents of 1–2 m s−1, we demonstrate the data-reduction benefits of real-time automatic classification of targets detected and tracked in multibeam sonar data. First, we evaluate classification capabilities for three machine learning algorithms: random forests, support vector machines, and k-nearest neighbors. For each algorithm, a hill-climbing search optimizes a set of hand-engineered attributes that describe tracked targets. The random forest algorithm is found to be most effective—in postprocessing, discriminating between biological and nonbiological targets with a recall rate of 0.97 and a precision of 0.60. In addition, 89% of biological targets are correctly classified as either seals, diving birds, fish schools, or small targets. Model dependence on the volume of training data is evaluated. Second, a real-time implementation of the model is shown to distinguish between biological targets and nonbiological targets with nearly the same performance as in postprocessing. From this, we make general recommendations for implementing real-time classification of biological targets in multibeam sonar data and the transferability of trained models.

Funder

Water Power Technologies Office

Division of Graduate Education

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference38 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3