Turbulence as a Mechanism for Orographic Precipitation Enhancement

Author:

Houze Robert A.1,Medina Socorro1

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract This study examines the dynamical and microphysical mechanisms that enhance precipitation during the passage of winter midlatitude systems over mountain ranges. The study uses data obtained over the Oregon Cascade Mountains during the Improvement of Microphysical Parameterization through Observational Verification Experiment 2 (IMPROVE-2; November–December 2001) and over the Alps in the Mesoscale Alpine Program (MAP; September–November 1999). Polarimetric scanning and vertically pointing S-band Doppler radar data suggest that turbulence contributed to the orographic enhancement of the precipitation associated with fronts passing over the mountain barriers. Cells of strong upward air motion (>2 m s−1) occurred in a layer just above the melting layer while the frontal precipitation systems passed over the mountain ranges. Upstream flow appeared to be generally stable except for some weak conditional instability at low levels in the two IMPROVE-2 cases. The cells occurred in a layer of strong shear at the top of a low-level layer of apparently retarded or blocked flow (shown by Doppler radial velocity data). The shear apparently provided a favorable environment for the turbulent cells to develop. The updraft cells appeared at the times and locations where the shear was strongest (>∼10 m s−1 km−1). The Richardson number was slightly less than 0.25 at the level where the cells were observed, suggesting shear-generated turbulence could have been the origin of the updraft cells. Another possibility is that the rough mountainous lower boundary could have triggered buoyancy oscillations within the stable, sheared flow. The existence of turbulent cells made possible a precipitation growth mechanism that would not have been present in a laminar upslope flow. The turbulent cells appeared to facilitate the rapid growth and fallout of condensate generated over the lower windward slopes of the mountains. In a laminar flow over terrain, upward motions would be unlikely to produce liquid water contents adequate to increase the density (and hence the fall speed) of precipitating ice particles by riming. The turbulent updraft cells apparently create pockets of higher values of liquid water content embedded in the widespread frontal cloud system, and snow particles falling from the parent cloud systems can then rapidly rime within the cells and fall out. Observations by polarimetric radar and direct aircraft sampling indicate the occurrence of rimed aggregate snowflakes and/or graupel in the turbulent layer. Inasmuch as the shear layer is the consequence of retardation or blocking of the low-level cross-barrier flow, and the turbulence is a response to the shear, the shear-induced cellularity is an indirect response of the flow to the topography. The turbulence embodied in this orographically induced cellularity allows a quick response of the precipitation fallout to the orography since aggregation and riming of ice particles in the turbulent layer produce heavier, more rapidly falling precipitation particles. Without the turbulent cells, condensate would more likely be advected farther up and perhaps even over the mountain range. Small-scale cellularity has traditionally been associated with the release of buoyant instability by the upslope flow. Our results suggest that cellularity may be achieved even if buoyant instability is weak or nonexistent, so that even a stable flow has the capacity to form cells that will enhance the precipitation fallout over the windward slopes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference41 articles.

1. A quantitative study of the “bright band” in radar precipitation echoes.;Austin;J. Meteor.,1950

2. Aircraft and dual polarization radar observations of hydrometeors in light stratiform precipitation.;Bader;Quart. J. Roy. Meteor. Soc.,1987

3. Bargen, D. W., and R. C.Brown, 1980: Interactive radar velocity unfolding. Preprints, 19th Conf. on Radar Meteorology, Miami Beach, FL, Amer. Meteor. Soc., 278–283.

4. Radar Observations of the Atmosphere.;Battan,1973

5. The MAP Special Observing Period.;Bougeault;Bull. Amer. Meteor. Soc.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3