A Comparison of the Triangle Retrieval and Variational Data Assimilation Methods for Surface Turbulent Flux Estimation

Author:

Margulis Steven A.1,Kim Jongyoun1,Hogue Terri1

Affiliation:

1. Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, California

Abstract

Abstract Future operational frameworks for estimating surface turbulent fluxes over the necessary spatial and temporal scales will undoubtedly require the use of remote sensing products. Techniques used to estimate surface fluxes from radiometric surface temperature generally fall into two categories: retrieval-based and data assimilation approaches. Up to this point, there has been little comparison between retrieval- and assimilation-based techniques. In this note, the triangle retrieval method is compared to a variational data assimilation approach for estimating surface turbulent fluxes from radiometric surface temperature observations. Results from a set of synthetic experiments and an application using real data from the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site indicate that the assimilation approach performs slightly better than the triangle method because of the robustness of the estimation to measurement errors and parsimony of the system model, which leads to fewer sources of structural model errors. Future comparison work using retrieval and data assimilation algorithms will provide more insight into the optimal approach for diagnosis of land surface fluxes using remote sensing observations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3