A Comparison of Perturbations from an Ensemble Transform and an Ensemble Kalman Filter for the NCEP Global Ensemble Forecast System

Author:

Zhou Xiaqiong1,Zhu Yuejian2,Hou Dingchen2,Kleist Daryl3

Affiliation:

1. NOAA/NWS/NCEP/EMC/I.M. Systems Group, College Park, Maryland

2. NOAA/NWS/NCEP/EMC, College Park, Maryland

3. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract Two perturbation generation schemes, the ensemble transformation with rescaling (ETR) and the ensemble Kalman filter (EnKF), are compared for the NCEP operational environment for the Global Ensemble Forecast System (GEFS). Experiments that utilize each of the two schemes are carried out and evaluated for two boreal summer seasons. It is found that these two schemes generally have comparable performance. Experiments utilizing both perturbation methods fail to generate sufficient spread at medium-range lead times beyond day 8. In general, the EnKF-based experiment outperforms the ETR in terms of the continuous ranked probability skill score (CRPSS) in the Northern Hemisphere (NH) for the first week. In the SH, the ensemble mean forecast is more skillful from the ETR perturbations. Additional experiments are performed with the stochastic total tendency perturbation (STTP) scheme, in which the total tendencies of all model variables are perturbed to represent the uncertainty in the forecast model. An improved spread–error relationship is found for the ETR-based experiments, but the STTP increases the ensemble spread for the EnKF-based experiment that is already overdispersive at early lead times, especially in the SH. With STTP employed, an increase in the EnKF-based CRPSS in the NH is reduced with a larger degradation in both the probability and ensemble-mean forecast skills in the SH. The results indicate that a rescaling of the EnKF initial perturbations and/or tuning of the STTP scheme is required when STTP is applied using the EnKF-based perturbations. This study provided guidance for the replacement of ETR with EnKF perturbations as part of the 2015 GEFS implementation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3