A Localized Adaptive Particle Filter within an Operational NWP Framework

Author:

Potthast Roland1,Walter Anne1,Rhodin Andreas1

Affiliation:

1. Data Assimilation Unit, Deutscher Wetterdienst, Offenbach am Main, Germany

Abstract

Particle filters are well known in statistics. They have a long tradition in the framework of ensemble data assimilation (EDA) as well as Markov chain Monte Carlo (MCMC) methods. A key challenge today is to employ such methods in a high-dimensional environment, since the naïve application of the classical particle filter usually leads to filter divergence or filter collapse when applied within the very high dimension of many practical assimilation problems (known as the curse of dimensionality). The goal of this work is to develop a localized adaptive particle filter (LAPF), which follows closely the idea of the classical MCMC or bootstrap-type particle filter, but overcomes the problems of collapse and divergence based on localization in the spirit of the local ensemble transform Kalman filter (LETKF) and adaptivity with an adaptive Gaussian resampling or rejuvenation scheme in ensemble space. The particle filter has been implemented in the data assimilation system for the global forecast model ICON at Deutscher Wetterdienst (DWD). We carry out simulations over a period of 1 month with a global horizontal resolution of 52 km and 90 layers. With four variables analyzed per grid point, this leads to 6.6 × 106 degrees of freedom. The LAPF can be run stably and shows a reasonable performance. We compare its scores to the operational setup of the ICON LETKF.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3