Affiliation:
1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
2. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
Abstract
Abstract
We investigate environmental factors of severe convective weather using temperature and moisture retrievals from the Atmospheric Infrared Sounder (AIRS) that lie along parcel trajectories traced from tornado, large hail, and severe wind producing events in the central United States. We create AIRS proximity soundings representative of the storm environment by calculating back trajectories from storm times and locations at levels throughout the troposphere, using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model forced with the 32-km North American Regional Reanalysis (NARR) and 12-km North American Mesoscale Forecast System (NAM12). The proximity soundings are calculated for severe weather events including tornadoes, hail ≥2 in. diameter, and wind gusts >65 mph (29 m s−1) specified in the NCEI Storm Events database. Box-and-whisker diagrams exhibit more realistic values of enhanced convective available potential energy (CAPE) and suppressed convective inhibition (CIN) relative to conventional “nearest neighbor” (NN) soundings; however, differences in lifting condensation level (LCL), level of free convection (LFC), and significant tornado parameter (STP) from the HYSPLIT-adjusted back traced soundings are more similar to NN soundings. This methodology should be extended to larger swaths of soundings, and to other operational infrared sounders, to characterize the large-scale environment in severe convective events.
Funder
National Aeronautics and Space Administration
Publisher
American Meteorological Society
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献