Microphysical Process Comparison of Three Microphysics Parameterization Schemes in the WRF Model for an Idealized Squall-Line Case Study

Author:

Bao J.-W.1,Michelson S. A.2,Grell E. D.2

Affiliation:

1. NOAA/Earth System Research Laboratory, Boulder, Colorado

2. NOAA/Earth System Research Laboratory, and CIRES, University of Colorado Boulder, Boulder, Colorado

Abstract

Abstract Three bulk microphysics schemes with different complexities in the Weather Research and Forecasting Model are compared in terms of the individual microphysical process terms of the hydrometeor mass and number mixing ratio tendency equations in an idealized 2D squall-line case. Through evaluation of these process terms and of hydrometeor size distributions, it is shown that the differences in the simulated population characteristics of snow, graupel, and rainwater are the prominent factors contributing to the differences in the development of the simulated squall lines using these schemes. In this particular case, the gust front propagation speed produced by the Thompson scheme is faster than in the other two schemes during the first 2 h of the simulation because it has a larger dominant graupel size. After 2 h into the simulation, the initially less intense squall lines in the runs using the WSM6 and Morrison schemes start to catch up in intensity and development to the run using the Thompson scheme. Because the dominant size of graupel particles in the runs using the WSM6 and Morrison schemes is smaller, these particles take more time to fall below the freezing level and enhance the rainwater production and its evaporative cooling. In the run using the Thompson scheme, the graupel production slows down at later times while the snow particle growth increases, leading to more snow falling below the freezing level to melt and surpass graupel particle melting in the production of rainwater.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3