Affiliation:
1. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
2. NOAA/Earth System Research Laboratory, Boulder, Colorado
Abstract
Abstract
In this study, we propose a physical-process-based stochastic parameterization scheme using cellular automata for NOAA’s Next Generation Global Prediction System. The cellular automata, used to simulate stochastic processes such as the production and destruction of subgrid convective elements, are conditioned on unresolved vertical motion that follows a prescribed stochastically generated skewed distribution (SGS). The SGS is described by a stochastic differential equation and linked to observations by taking into account the first four moments from an observed dataset. In the proposed parameterization framework, we emphasize the need for a dynamical memory term to be included in physical-process-based stochastic parameterizations, and we illustrate the requirement for the dynamical memory using the Mori–Zwanzig formalism. Although this paper focuses on the methodology, early results indicate that if we apply our stochastic framework to deep cumulus convection, it is found that the frequency distribution of precipitation is improved in a single-member stochastic forecast, and some improved spread–skill relationship in ensemble runs can be found in state variables in the tropics, as well as in the subtropics.
Funder
National Oceanic and Atmospheric Administration
Publisher
American Meteorological Society
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献