A Model Framework for Stochastic Representation of Uncertainties Associated with Physical Processes in NOAA’s Next Generation Global Prediction System (NGGPS)

Author:

Bengtsson Lisa12,Bao Jian-Wen2,Pegion Philip12,Penland Cecile2,Michelson Sara12,Whitaker Jeffrey2

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

2. NOAA/Earth System Research Laboratory, Boulder, Colorado

Abstract

Abstract In this study, we propose a physical-process-based stochastic parameterization scheme using cellular automata for NOAA’s Next Generation Global Prediction System. The cellular automata, used to simulate stochastic processes such as the production and destruction of subgrid convective elements, are conditioned on unresolved vertical motion that follows a prescribed stochastically generated skewed distribution (SGS). The SGS is described by a stochastic differential equation and linked to observations by taking into account the first four moments from an observed dataset. In the proposed parameterization framework, we emphasize the need for a dynamical memory term to be included in physical-process-based stochastic parameterizations, and we illustrate the requirement for the dynamical memory using the Mori–Zwanzig formalism. Although this paper focuses on the methodology, early results indicate that if we apply our stochastic framework to deep cumulus convection, it is found that the frequency distribution of precipitation is improved in a single-member stochastic forecast, and some improved spread–skill relationship in ensemble runs can be found in state variables in the tropics, as well as in the subtropics.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference85 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3