Near-Surface Frontogenesis and Atmospheric Instability along the U.S. East Coast during the Extratropical Transition of Hurricane Matthew (2016)

Author:

Powell Scott W.1,Bell Michael M.2

Affiliation:

1. Department of Meteorology, Naval Postgraduate School, Monterey, California

2. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

Abstract Hurricane Matthew locally generated more than 400 mm of rainfall on 8–9 October 2016 over the eastern Carolinas and Virginia as it transitioned into an extratropical cyclone. The heaviest precipitation occurred along a swath situated up to 100–200 km inland from the coast and collocated with enhanced low-tropospheric frontogenesis. Analyses from version 3 of the Rapid Refresh (RAPv3) model indicate that rapid frontogenesis occurred over eastern North and South Carolina and Virginia on 8 October, largely over a 12-h time period between 1200 UTC 8 October and 0000 UTC 9 October. The heaviest rainfall in Matthew occurred when and where spiral rainbands intersected the near-surface front, which promoted the lift of conditionally unstable, moist air. Parallel to the spiral rainbands, conditionally unstable low-tropospheric warm, moist oceanic air was advected inland, and the instability was apparently released as the warm air mass rose over the front. Precipitation in the spiral rainbands intensified on 9 October as the temperature gradient along the near-surface front rapidly increased. Unlike in Hurricane Floyd over the mid-Atlantic states, rainfall totals within the spiral rainbands of Matthew as they approached the near-surface front evidently were not enhanced by release of conditional symmetric instability. However, conditional symmetric instability release in the midtroposphere may have enhanced rainfall 200 km northwest of the near-surface front. Finally, although weak cold-air damming occurred prior to heavy rainfall, damming dissipated prior to frontogenesis and did not impact rainfall totals.

Funder

National Science Foundation

University Corporation for Atmospheric Research

Naval Postgraduate School

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3