Application of the Synchronized B-Grid Staggering for Solution of the Shallow-Water Equations on the Spherical Icosahedral Grid

Author:

Miura Hiroaki1

Affiliation:

1. Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan

Abstract

Abstract A shallow-water model using the hexagonal synchronized B grid (SB grid) is developed on the spherical icosahedral grid. The SB grid adopts the same variable arrangement as the ZM grid, but does not suffer from a computational mode problem of the ZM grid since interactions in the extra degrees of freedom of velocity fields through the nonlinear terms are excluded. For better representations of the geostrophic balance, a quadratic reconstruction of fluid height inside hexagonal/pentagonal cells is used to configure the gradient with the second-order accuracy. When nongeostrophic motions are more dominant than geostrophic ones, smaller-scale noises arise. To prevent a decoupling of the velocity fields, a hyperviscosity is added to force velocities adjacent to each other to evolve synchronously. Some standard tests are performed to examine the SB-grid shallow-water model. The model is almost second-order accurate if both the initial conditions and the surface topography are smooth and if the influence of the hyperviscosity is small. The SB-grid model is superior to a C-grid model regarding the convergence of error norms in a steady-state geostrophically balanced flow test, while it is inferior to that concerning conservation of total energy in a case of flow over an isolated mountain. An advantage of the SB-grid model is that both accuracy and stability are weakly sensitive to whether a grid optimization is applied or not. The SB grid is an attractive alternative to the conventional A grid and is competitive with the C grid on the spherical icosahedral grid.

Funder

Japan Society for the Promotion of Science

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3