Dynamics of Deep Recirculation Cells Offshore of the Deep Western Boundary Current in the Subtropical North Atlantic (15°–30°N)

Author:

Biló Tiago Carrilho12,Johns William E2,Zhao Jian3

Affiliation:

1. a Scripps Institution of Oceanography, University California, San Diego, La Jolla, California

2. b Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

3. c Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland

Abstract

AbstractThe dynamics of the deep recirculation offshore of the deep western boundary current (DWBC) between 15° and 30°N within the upper North Atlantic Deep Water layer (1000 ≤ z ≤ 3000 m) is investigated with two different eddy-resolving numerical simulations. Despite some differences in the recirculation cells, our assessment of the modeled deep isopycnal circulation patterns (36.77 ≤ σ2 ≤ 37.06 kg m−3) shows that both simulations predict the DWBC flowing southward along the continental slope, while the so-called Abaco Gyre and two additional cyclonic cells recirculate waters northward in the interior. These cells are a few degrees wide, located along the DWBC path, and characterized by potential vorticity (PV) changes occurring along their mean streamlines. The analysis of the mean PV budget reveals that these changes result from the action of eddy forcing that tends to erode the PV horizontal gradients. The lack of a major upper-ocean boundary current within the study region, and the fact that the strongest eddy forcing is constrained within a few hundreds of kilometers of the western boundary, suggest that the DWBC is the primary source of eddy forcing. Finally, the eddies responsible for forcing the recirculation have dominant time scales between 100 and 300 days, which correspond to the primary observed variability scales of the DWBC transport at 26.5°N.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3