Affiliation:
1. Woods Hole Oceanographic Institution, 360 Woods Hole Road MS 21, Woods Hole, MA 02543
Abstract
AbstractThe frequency and latitudinal dependence of the mid-latitude wind-driven meridional overturning circulation (MOC) is studied using theory and linear and nonlinear applications of a quasi-geostrophic numerical model. Wind-forcing is varied by either changing the strength of the wind or by shifting the meridional location of the wind stress curl pattern. At forcing periods less than the first mode baroclinic Rossby wave basin crossing time scale the linear response in the mid-depth and deep ocean is in phase and opposite to the Ekman transport. For forcing periods close to the Rossby wave basin crossing time scale, the upper and deep MOC are enhanced, and the mid-depth MOC becomes phase shifted, relative to the Ekman transport. At longer forcing periods the deep MOC weakens and the mid-depth MOC increases, but eventually for long enough forcing periods (decadal) the entire wind-driven MOC spins down. Nonlinearities and mesoscale eddies are found to be important in two ways. First, baroclinic instability causes the mid-depth MOC to weaken, lose correlation with the Ekman transport, and lose correlation with the MOC in the opposite gyre. Second, eddy thickness fluxes extend the MOC beyond the latitudes of direct wind forcing. These results are consistent with several recent studies describing the four-dimensional structure of the MOC in the North Atlantic.
Publisher
American Meteorological Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献