Boundary layer-mediated vorticity generation in currents over sloping bathymetry

Author:

Jagannathan Arjun1,Srinivasan Kaushik1,McWilliams James C.1,Molemaker M. Jeroen1,Stewart Andrew L.1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, USA

Abstract

AbstractCurrent-topography interactions in the ocean give rise to eddies spanning a wide range of spatial and temporal scales. Latest modeling efforts indicate that coastal and underwater topography are important generation sites for submesoscale coherent vortices (SCVs), characterized by horizontal scales of (0.1 – 10) km. Using idealized, submesoscale and BBL-resolving simulations and adopting an integrated vorticity balance formulation, we quantify precisely the role of bottom boundary layers (BBLs) in the vorticity generation process. In particular, we show that vorticity generation on topographic slopes is attributable primarily to the torque exerted by the vertical divergence of stress at the bottom. We refer to this as the Bottom Stress Divergence Torque (BSDT). BSDT is a fundamentally nonconservative torque that appears as a source term in the integrated vorticity budget and is to be distinguished from the more familiar Bottom Stress Curl (BSC). It is closely connected to the bottom pressure torque (BPT) via the horizontal momentum balance at the bottom and is in fact shown to be the dominant component of BPT in solutions with a well-resolved BBL. This suggests an interpretation of BPT as the sum of a viscous, vorticity generating component (BSDT) and an inviscid, ‘flow-turning ’ component. Companion simulations without bottom drag illustrate that although vorticity generation can still occur through the inviscid mechanisms of vortex stretching and tilting, the wake eddies tend to have weaker circulation, be substantially less energetic, and have smaller spatial scales.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3