Skills and Limitations of the Adiabatic Omega Equation: How Effective Is It to Retrieve Oceanic Vertical Circulation at Mesoscale and Submesoscale?

Author:

Pietri Alice1,Capet Xavier1,d’Ovidio Francesco1,Levy Marina1,Le Sommer Julien2,Molines Jean-Marc2,Giordani Hervé3

Affiliation:

1. a Laboratoire d’Océanographie et du Climat, Institut Pierre Simon Laplace, CNES/CNRS/IRD/MNHN/SU, Paris, France

2. b Université Grenoble Alpes/CNRS/IRD/G-INP, IGE, Grenoble, France

3. c Centre National de Recherches, Météorologiques, Météo-France, Toulouse, France

Abstract

AbstractThe quasigeostrophic and the generalized omega equations are the most widely used methods to reconstruct vertical velocity w from in situ data. As observational networks with much higher spatial and temporal resolutions are being designed, the question arises of identifying the approximations and scales at which an accurate estimation of w through the omega equation can be achieved and what critical scales and observables are needed. In this paper we test different adiabatic omega reconstructions of w over several regions representative of main oceanic regimes of the global ocean in a fully eddy-resolving numerical simulation with a 1/60° horizontal resolution. We find that the best reconstructions are observed in conditions characterized by energetic turbulence and/or weak stratification where near-surface frontal processes are felt deep into the ocean interior. The quasigeostrophic omega equation gives satisfactory results for scales larger than ~10 km horizontally while the improvements using a generalized formulation are substantial only in conditions where frontal turbulent processes are important (providing improvements with satisfactory reconstruction skill down to ~5 km in scale). The main sources of uncertainties that could be identified are related to processes responsible for ocean thermal wind imbalance (TWI), which is particularly difficult to account for (especially in observation-based studies) and to the deep flow that is generally improperly accounted for in omega reconstructions through the bottom boundary condition. Nevertheless, the reconstruction of mesoscale vertical velocities may be sufficient to estimate vertical fluxes of oceanic properties in many cases of practical interest.

Funder

NASA/CNES Tosca project BIOSWOT

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3