Observational estimates of turbulent mixing in the southeast Indian Ocean

Author:

Cyriac Ajitha1,Phillips Helen E.2,Bindoff Nathaniel L.3,Mao Huabin4,Feng Ming5

Affiliation:

1. Institute for Marine and Antarctic Studies, University of Tasmania, and ARC Centre of Excellence for Climate System Science, Hobart, Australia

2. Institute for Marine and Antarctic Studies, University of Tasmania

3. Institute for Marine and Antarctic Studies, University of Tasmania, and ARC Centre of Excellence in Climate Extremes, Hobart, Australia, and Antarctic Climate and Ecosystems CRC, Hobart, Australia, and CSIRO Marine and Atmospheric Research, Hobart, Australia

4. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou, China

5. CSIRO Oceans and Atmosphere, IOMRC, Crawley, Western Australia, Australia and Centre for Southern Hemisphere Oceans Research, Hobart, Tasmania, Australia

Abstract

AbstractThis study investigates the spatio-temporal variability of turbulent mixing in the eastern South Indian Ocean using a collection of data from EM-APEX profiling floats, shipboard CTD and microstructure profilers. The floats collected 1566 profiles of temperature, salinity and horizontal velocity data down to 1200 m over a period of about four months. A fine-scale parameterization is applied to the float and CTD data to estimate turbulent mixing. Elevated mixing is observed in the upper ocean, over bottom topography and in mesoscale eddies. Mixing is enhanced in the anticyclonic eddies due to trapped near-inertial waves within the eddy. We found that cyclonic eddies contribute to turbulent mixing in the depth range of 500 – 1000 m, which is associated with downward propagating internal waves. The mean diapycnal diffusivity over 250 – 500 m depth is O(10−6) m2 s−1 and it increases to O(10−5) m2 s−1 in 500 – 1000 m in cyclonic eddies. The turbulent mixing in this region has implications for watermass transformation and large-scale circulation. Higher diffusivity (O(10−5) m2 s−1) is observed in the Antarctic Intermediate Water (AAIW) layer in cyclonic eddies whereas weak diffusivity is observed in the Subantarctic Mode Water (SAMW) layer (O(10−6) m2 s−1). Counter-intuitively, then, the SAMW watermass properties are strongly affected in cyclonic eddies whereas the AAIW layer is less affected. Comparatively high diffusivity at the location of the South Indian Countercurrent (SICC) jets suggests there are wave-mean flow interactions in addition to the wave-eddy interactions that warrant further investigation.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3