Affiliation:
1. a Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Abstract
AbstractSea level rise over the last deglaciation is dominated by the mass of freshwater added to the oceans by the melting of the great ice sheets. While the steric effect of changing seawater density is secondary over the last 20 000 years, processes connected to deglacial warming, the redistribution of salt, and the pressure load of meltwater all influence sea level rise by more than a meter. Here we develop a diagnostic for steric effects that is valid when oceanic mass is changing. This diagnostic accounts for seawater compression due to the added overlying pressure of glacial meltwater, which is here defined to be a barosteric effect. Analysis of three-dimensional global seawater reconstructions of the last deglaciation indicates that thermosteric height change (1.0–1.5 m) is counteracted by barosteric (−1.9 m) and halosteric (from −0.4 to 0.0 m) effects. The total deglacial steric effect from −0.7 to −1.1 m has the opposite sign of analyses that assume that thermosteric expansion is dominant. Despite the vertical oceanic structure not being well constrained during the Last Glacial Maximum, net seawater contraction appears robust as it occurs in four reconstructions that were produced using different paleoceanographic datasets. Calculations that do not account for changes in ocean pressure give the misleading impression that steric effects enhanced deglacial sea level rise.
Publisher
American Meteorological Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Sea-Level Budget of the Instrumental Era;Reference Module in Earth Systems and Environmental Sciences;2023